Inverse semigroup expansions and their actions on $C^{\ast}$-algebras

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Module cohomology group of inverse semigroup algebras

Let $S$ be an inverse semigroup and let $E$ be its subsemigroup of idempotents. In this paper we define the $n$-th module cohomology group of Banach algebras and show that the first module cohomology group $HH^1_{ell^1(E)}(ell^1(S),ell^1(S)^{(n)})$ is zero, for every odd $ninmathbb{N}$. Next, for a Clifford semigroup $S$ we show that $HH^2_{ell^1(E)}(ell^1(S),ell^1(S)^{(n)})$ is a Banach sp...

متن کامل

A Note on Locally Inverse Semigroup Algebras

Let R be a commutative ring and S a finite locally inverse semigroup. It is proved that the semigroup algebra R S is isomorphic to the direct product of Munn algebras M R GJ , mJ , nJ ;PJ with J ∈ S/J, where mJ is the number of R-classes in J , nJ the number of L-classes in J , and GJ a maximum subgroup of J . As applications, we obtain the sufficient and necessary conditions for the semigroup ...

متن کامل

module cohomology group of inverse semigroup algebras

let $s$ be an inverse semigroup and let $e$ be its subsemigroup of idempotents. in this paper we define the $n$-th module cohomology group of banach algebras and show that the first module cohomology group $hh^1_{ell^1(e)}(ell^1(s),ell^1(s)^{(n)})$ is zero, for every odd $ninmathbb{n}$. next, for a clifford semigroup $s$ we show that $hh^2_{ell^1(e)}(ell^1(s),ell^1(s)^{(n)})$ is a banach space,...

متن کامل

Derivations on Certain Semigroup Algebras

In the present paper we give a partially negative answer to a conjecture of Ghahramani, Runde and Willis. We also discuss the derivation problem for both foundation semigroup algebras and Clifford semigroup algebras. In particular, we prove that if S is a topological Clifford semigroup for which Es is finite, then H1(M(S),M(S))={0}.

متن کامل

Differential Algebras on Semigroup Algebras

This paper studies algebras of operators associated to a semigroup algebra. The ring of differential operators is shown to be anti-isomorphic to the symmetry algebra and both are described explicitly in terms of the semigroup. As an application, we produce a criterion to determine the equivalence of A-hypergeometric systems. Conditions under which associated algebras are finitely generated are ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Illinois Journal of Mathematics

سال: 2012

ISSN: 0019-2082

DOI: 10.1215/ijm/1399395828